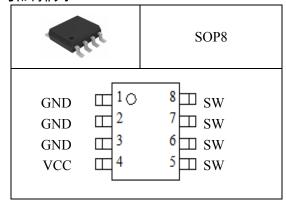
同步整流控制器芯片——CSC7720

产品概述

CSC7720是一款用于开关电源的高效率同步整流控制IC。其具备较高的集成度,在有效的提升开关电源的转换效率的同时,减少了外围元器件的应用。


CSC7720可用于DCM/QR开关电源系统。 该电路内置45V的功率管,在系统中替代次级肖特基管,并提高整个系统的工作效率。具有开启 阀值电压低、开关速度快和反向恢复时间短的特点。

CSC7720具有极低的静态工作损耗和自供电技术。电路采用SOP8的标准封装形式。

主要特点

- 支持 DCM 和 QR 模式
- 内部集成低 R_{DS (ON)} 的 N 沟道功率 MOSFET
- 开关转换速度快、反向恢复时间短
- 特有的自供电技术,无需外部电源供电
- 内置多重保护
- 外围应用器件少
- 静态功耗小

引脚排列

典型应用

- 电源适配器、电源转换器等
- 小型数码产品的辅助电源等
- 适用于 5V 2A 电源方案

引脚功能

序号	符号	功能描述	序号	符号	功能描述	
1			5			
2	GND	地,连到内部 MOSFET 的源端	6	CIVI	中 44 MOCEUT 44 年 44	
3			7	SW	内部 MOSFET 的漏端	
4	VCC	电源端	8			

电路功能框图

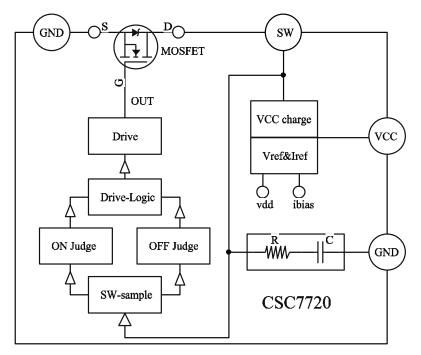


图1 电路功能框图

最大额定值

项目名称	符号	范围	单位
SW 电压	SW	-0.7 ~40	V
最大功耗	PD	2.5	W
PN 结到环境的热阻	$ heta_{ m JA}$	80	°C/W
PN 结到壳体的热阻	$ heta_{ m JC}$	55	°C/W
工作结温范围	T_{J}	-20~150	${\mathbb C}$
储存温度范围	T_{STG}	-65~150	$^{\circ}$
ESD(人体模型)		2	KV

注意: (1)如果器件运行条件超过上述各项最大额定值,可能对器件造成永久性损坏。上述参数仅是运行条件的极大值,我们不建议器件在该规范范围外运行。如果器件长时间工作在绝对最大极限条件下,其稳定性可能会受到影响。

(2) 无特殊说明,所有的电压以 GND 作为参考。

电气参数 (无特别说明情况下, $T_A=25^{\circ}C$)

参数名称	符号	测试条件	最小	典型	最大	单位
Vcc 电压部分						
静态电流	I_Q	VCC=7.5V, C _{VCC} =0.1uF	63	80	97	uA
VCC 启动电压	V_{CC_ON}			3.9		V
VCC 限电压	V_{CC_OVP}		7.5	8.0	8.5	V
VCC 欠压	V_{CC_UVLO}			3.6		V
同步控制部分	同步控制部分					
开启阀值	V_{THON}			-0.4		V
关闭阀值	V_{THOFF}		-15	-10	-5	mV
功率 MOS 开通延时	T_{DON}			120		ns
功率 MOS 关闭延时	T_{DOFF}			10		ns
最小开通时间	T _{ON_MIN}		0.6	0.8	1.0	us
功率 MOS 管						
漏-源击穿电压	$V_{(BR)DSS}$	$V_{GS}=0V, I_{D}=0.25mA$	40	45		V
漏-源导通电阻	R_{dson}	V_{GS} =6.5V, I_{D} =7A		17	20	mΩ
栅极阈值电压	V _{GS(TH)}	$V_{DS}=V_{GS}$, $I_{D}=0.25$ mA		1.5		V
反向漏电流	I_{DSS}	V _{DS} =40V, V _{GS} =0V			1	μΑ
最大峰值电流	I _{peak}			40		A

典型应用线路图

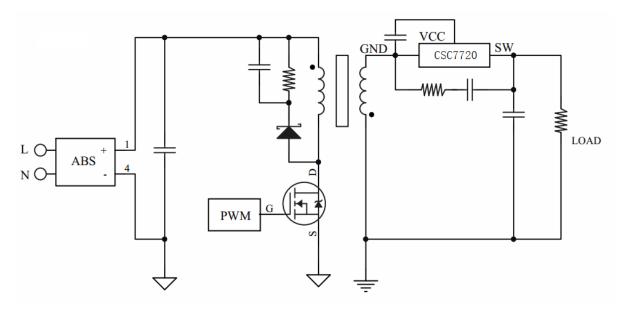


图 2 典型应用图

功能描述

1、介绍

CSC7720是一款同步整流器,可以代替肖特基二极管提高反激变换器的效率。CSC7720支持工作在非连续模式(DCM)的反激变换器中,其内部集成了低 R_{DS} (ON)的N沟道功率MOSFET,外围应用简单,可靠性高。电路具有极低的静态工作损耗和内部自供电技术。

2、启动和欠压

在上电时,通过内部的自供电系统,给VCC供电。当VCC电压低于 V_{CC_ON} ,内置功率MOS管关闭,依靠功率MOS管寄生体二极管导通。当VCC电压达到 V_{CC_ON} 时,激活同步整流电路,而当VCC电压降到 V_{CC_UVLO} 以下时,IC重新进入欠压锁定状态,芯片重新进入启动状态。

在PSR电源系统工作中,当原边绕组导通时,副边同名端电位(GND端)会出现一个小于-10V的 负脉冲电压(宽度为Tonp),利用SW端与GND端之间的电压差,通过内部特定的自供电回路,可对 CSC7720的VCC端电容充电;当系统处于退磁时间和自谐振时间段时,系统停止对VCC端电容充电,利用VCC端电容的储能对电路持续供电。

3、同步整流工作状态

当 CSC7720 的 VCC 端电压从 0V 开始升高时,电路首先进入欠压锁定(UVLO)状态,同步整流输出驱动电压为低电平,电路处于关闭状态,此时内部 N 沟道 MOSFET 处于寄生二极管整流状态。 VCC 端电压继续上升,当 VCC 达到 $V_{\text{CC}_{ON}}$ 时,内部控制模块启动。电路通过 DRAIN 端检测 V_{DS} 电压、当 V_{DS} 电压低于 V_{THON} 的阀值时,电路内部产生一个驱动信号经过一定延时后去驱动内部 MOSFET 管导通,此时电流立即从内部寄生的二极管上转移到导通的 MOSFET 管上。随着存储在变压器上的能量慢慢释放完毕,通过 MOSFET 的电流也将慢慢减小到 0, V_{DS} 的电压也将慢慢上升,当 DRAIN 端检测到 V_{DS} 电压高于 V_{THOFF} 的阀值时,驱动电压经过一定延时后关闭,MOSFET 管再次进入截止状态。图 3 显示了驱动信号与输出的时序图:

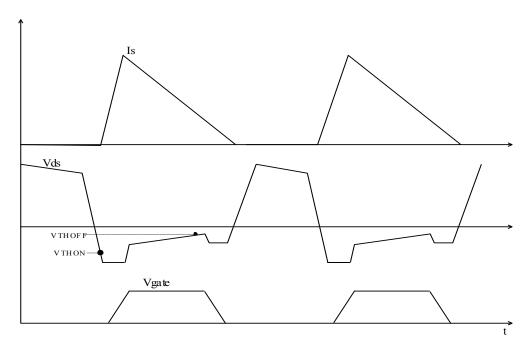
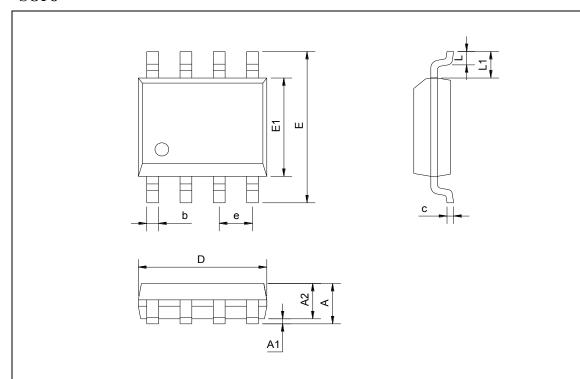



图 3 Is、Vds 和 Vgate 的典型波形图

封装外形及尺寸图

SOP8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A		1.750		0.069	
A1	0.050	0.230	0.002	0.090	
A2	1.300	1.500	0.051	0.059	
b	0.350	0.450	0.014	0.018	
c	0.180	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E1	3.700	4.100	0.146	0.161	
Е	5.800	6.200	0.228	0.244	
e	1.270(BSC)		0.050(BSC)		
L	0.400	0.800	0.016	0.031	

无锡市晶源微电子有限公司

WUXI CRYSTAL SOURCE MICROELECTRONICS CO.,LTD

地址:中国江苏省无锡市高新技术开发区锡锦路5号

邮编: 214028

电话: (销售)86-510-85205117, 86-510-85205107,

(应用技术支持)86-510-81003239

传真: 86-510-85424091

网址: http://www.cschip.com

销售分公司:

深圳市亿达微电子有限公司

地址:中国深圳市福田区泰然工业区 210 栋东座 2 楼 D 室

邮编: 518033

电话: (销售) 86-755-83740369 转 801、802、803

(应用技术支持) 86-755-83740369 转 824、820

传真: 86-755-83741418

注意: 本产品为静电敏感元件,请注意防护! ESD 损害的范围可以从细微的性能下降扩大到设备故障。精密集成电路可能更容易受到损害,因此可能导致元件参数不能满足公布的规格。

- ▶ 感谢您使用本公司的产品,建议您在使用前仔细阅读本资料。
- ▶ 本资料中的信息如有变化,恕不另行通知。希望您经常与销售部或者技术支持部门联系,索取最新资料。